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Population-based metagenomics
analysis reveals markers for gut
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Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based
cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors,
including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60
dietary factors. These factors collectively explain 18.7% of the variation seen in the
interindividual distance of microbial composition. We could associate 110 factors to 125
species and observed that fecal chromogranin A (CgA), a protein secreted by enteroendocrine
cells, was exclusively associated with 61 microbial species whose abundance collectively
accounted for 53% of microbial composition. Low CgA concentrations were seen in individuals
with a more diverse microbiome. These results are an important step toward a better
understanding of environment-diet-microbe-host interactions.

T
he human gut microbiome plays a major
role in the production of vitamins, enzymes,
and other compounds that digest and me-
tabolize food and regulate our immune sys-
tem (1). It can be considered as an extra

organ, with remarkable dynamics and a major
impact on our physiology. The composition of the
gut microbiome can be considered as a complex
trait, with the quantitative variation in the micro-
biome affected by a large number of host and
environmental factors, each of which may have
only a small additive effect, making it difficult to
identify the association for each separate item. In
this study, we present a systematic metagenomic
association analysis of 207 intrinsic and exoge-
nous factors from the LifeLines-DEEP cohort, a
Dutch population–based study (2, 3). Our study

reveals covariates in the microbiome and, more
importantly, provides a list of factors that corre-
late with shifts in the microbiome composition
and functionality.
This study includes stool samples from 1179

LifeLines-DEEP participants from the general
population of the northern part of theNetherlands
(2). The cohort comprised predominantly Dutch
participants; 93.7% had both parents born in the
Netherlands. The gut microbiome was analyzed
withpaired-endmetagenomic shotgun sequencing
(MGS) on aHiSeq 2000, generating an average of
3.0 Gb of data (about 32.3 million reads) per sam-
ple (4). After excluding 44 samples with low read
counts, 1135 participants (474 males and 661 fe-
males) remained for further analysis. We tested
207 factors with respect to the microbiomes of

these participants: 41 intrinsic factors of various
physiological and biomedical measures, 39 self-
reported diseases, 44 categories of drugs, 5 cate-
gories of smoking status, and 78 dietary factors
(fig. S1 and table S1). These factors cover dietary
habits, lifestyle, medication use, and health pa-
rameters. Most of the factors showed a low or
modest intercorrelation (table S2, A to C, and fig.
S2, A to D); many are highly variable, including,
as expected in the Dutch population, the high con-
sumption of milk products and low use of anti-
biotics. Antibiotic use in the Netherlands is the
lowest in Europe, at a level half that of the UK
and one-third that of Belgium. To cover health-
domain factors relevant to the host immune sys-
tem and gut health, we collected cell counts for
eight different blood cell types, measured blood
cytokine concentrations, assessed stool frequency
and stool type by Bristol stool score, andmeasured
fecal levels of several secreted proteins, including
calprotectin as a marker for the immune system
activation, human b-defensin-2 (HBD-2) as amark-
er for defense against invading microbes, and
chromogranin A (CgA) as a marker for neuro-
endocrine system activation.
After quality control and removal of sequence

readsmapping to the human genome, themicro-
biome sequence reads were mapped to ~1 million
microbial-taxonomy–specific marker genes with
MetaPhlAn 2.0 (5) to predict the abundance of
microorganisms (fig. S3A). For each participant,
we predicted the abundances for 1649 microbial
taxonomic clades ranging from four different do-
mains to 632 species (Fig. 1A). Most of the reads
(97.6%) came from Bacteria; 2.2% were from
Archaea, 0.2% from Viruses, and <0.01% from
Eukaryotes. Comparison to previous taxonomic
profiles of the same subjects by 16S ribosomal
RNA (rRNA) gene sequencing (Fig. 1B) showed
that MGS predicted more microbial species but
fewer families and genera. At the phylum level,
the abundances of dominant bacterial phyla
Firmicutes (63.7%) and Bacteroidetes (8.1%) were
similar to estimates based on 16S rRNA gene se-
quencing, but the abundance of Actinobacteria
was higher in MGS (22.3%) than 16S (12.3%) (fig.
S4). The microbiome quality control project has
recently suggested that microbial composition es-
timatesmay not be comparable between studies if
sample preparation anddata analysis are not done
in the sameway (6). For instance, compared to the
composition reported in other studies of a similar
size that used different methods (7, 8), our study
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detected ahigher abundance ofActinobacteriabut
a lower abundance of Bacteroidetes. Notably, all
samples in our studywere isolated and processed
with the same pipeline, ensuring low technical var-
iation and high analysis power to access the asso-
ciation of multiple factors with the microbiome.
The high interindividual variation reflects the

community composition (fig. S5) and is clearly
driven by the abundance of the dominant phyla

(Fig. 2A). Our further analysis ofmicrobial compo-
sitionwas confined to the 632unique species (table
S3). For the functional profiling, the abundances
of 568,874 UniRef gene families were grouped
into clusters of orthologous groups (COG) on the
basis of the EggNOG database and MetaCyc
pathways (fig. S3A). Although the distribution
of diversity, genes, and COG richness showed
high intervariability (Fig. 2 , B to D), functional

profiles based on 23 nonredundant, Gene Ontol-
ogy molecular function categories remained
stable (fig. S6) within our cohort, similar to pre-
vious reports (9).
We correlated 207 factors to the interindividual

variation inmicrobial composition, diversity, rich-
ness of genes, and COGs (fig. S3B). At a false
discovery rate (FDR) of <0.1, 126 factors were as-
sociated with interindividual distance of micro-
bial composition (Bray-Curtis distance) (Fig. 3 and
table S4), of which 90% could be replicated in 16S
rRNA data from the same subjects (table S5 and
fig. S7), together explaining 18.7% of the variation
in composition distance (fig. S8A). A total of 35
factors were associated with Shannon’s diversity
index ofmicrobial composition (together explain-
ing 13.7% variation; table S6 and fig. S8A), of
which 80%were replicated in 16S rRNAdata from
the same subjects (table S7); 31 factors were asso-
ciated with gene richness (together explaining
16.7% of variation; table S8) and 34 factors with
COGrichness (explaining 18.8%of variation) (table
S9 and fig. S8A; for replication rates, see table
S10). We saw a large overlap between different
diversity and richness analyses, and most of
them were also associated with composition dis-
tance (fig. S8B).
We performed multivariate association analy-

ses between each factorwith 170 abundant species
(>0.01% of total microbial composition and pres-
ent in at least 10 individuals) and 215 MetaCyc
pathways (fig. S3C). When corrected for age, gen-
der, and sequence depth, we found 485 associa-
tions at FDR<0.1 between 110 factors and 125
species (table S11) and 524 associations between
71 factors and 176 MetaCyc pathways (table S12).
By correcting the correlation structures among
all 207 factors, the number of associations was
reduced to 128 independent associations with spe-
cies (table S13) and215 associationswith pathways
(table S14).
Our data confirmed someprevious findings and

also yielded novel associations. In our study, age
and gender were correlated not only with micro-
bial composition distance and diversity but also
with functional richness. Women showed higher
COG richness than men (adjusted P = 0.03), and
COG richness increased with age (adjusted P =
0.002) (fig. S9).Multiple intrinsic parameters, such
as blood cell counts and lipid concentrations, were
associated to composition and function levels as
well. For example, a higher amount of hemoglo-
bin was consistently associated with lower diver-
sity and functional richness (Fig. 3 and tables S6
to S9). The strongest associations that we found
were for the fecal levels of several secreted pro-
teins, including human b-defensin-2 (HBD-2), cal-
protectin (10, 11), and chromograninA (CgA), with
microbial composition, diversity, and functional
richness (Figs. 3 and 4A), as well as with specific
species (table S11) andpathways (table S12). Among
these associations, CgA showed the strongest as-
sociation with composition distance (adonisR2 =
0.03, adjusted P = 0.0006), microbial diversity
(Spearman r = –0.22, adjusted P = 1.49 × 10−12),
gene richness (Spearman r = –0.23, adjusted
P = 9.4 × 10−13), and COG richness (Spearman
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Fig. 1. The taxonomic tree of microbial taxonomies predicted by MGS and 16S rRNA gene sequen-
cing. (A) Taxonomic tree based on MGS shotgun sequencing data. (B) Taxonomic tree based on 16S
rRNA gene sequencing data. Each dot represents a taxonomic entity. From the inner to outer circles, the
taxonomic levels range from domains to species. Different colors of dots indicate different taxonomy
levels according to the color key shown. Numbers in parentheses indicate the total number of unique
taxonomies detected at each level.
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Fig. 2. The interindividual variation of microbial composition and function profile. (A) Principal
coordinates analysis (PCoA) plots of Bray-Curtis distance of microbial composition. The composition
was driven by the most dominant phyla: Firmicutes, Actinobacteria, and Bacteroidetes. Each dot repre-
sents one individual. Color indicates the relative abundance of each phylum. (B) Distribution of Shannon’s
diversity index. (C) Distribution of the gene richness. (D) Distribution of the clusters of orthologous groups
(COG) richness.
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r = –0.285, adjusted P = 2.53 × 10−20) (tables S4 to
S9). The association of CgA with composition dis-
tance was then validated in an independent co-
hort of 19 individuals for whom 16S rRNA gene
sequencing data were available (P = 0.0065) (fig.
S10). A lower amount of CgAwas associated with
higher diversity, with functional richness, with
high concentrations of high-density lipoprotein
(HDL), and with intake of fruits and vegetables.
In contrast, elevated fecal CgA was associated
with high fecal levels of calprotectin, high blood
concentrations of triglycerides, high stool fre-
quency, soft stool type, and self-reported irritable
bowel syndrome (IBS) (Fig. 4B). After correcting
for the confounding effect of all other factors, our
analysis revealed 61 species exclusively associated
with CgA (Fig. 4, C and D, and table S13) whose
abundances collectively accounted for 53% of
the total abundance of the microbiome on aver-
age, and with 40 MetaCyc pathways (table S14)
that accounted for 34.6% of the pathway pro-
files. The strongest association to CgA was ob-
served for theArchaea speciesMethanobrevibacter
smithii (fig. S11A), which plays an important role in
the digestion of polysaccharides by consuming
the end products of bacterial fermentation and
methanogenesis (12) (fig. S11B). A negative asso-
ciation with CgA abundance was observed for
24 out of 36 species from phylum Bacteroidetes
(Fig. 4, C and D).
CgA is amember of the granine peptides, which

are secreted in nervous, endocrine, and immune
cells under stress (13) and during active periods
of gut-related diseases such as IBS and inflamma-
tory bowel disease, although some findings are
contradictory (14–16). Many different functions
have been proposed for CgA and other granine
peptides, including roles in neurological pathways,
pain regulation, and antimicrobial activity against
bacteria, fungi, and yeasts (17, 18). However, their
mechanismof action andphysiological importance
need further detailed investigation. To testwhether
genetic variants that influence CHGA gene expres-
sion (encoding CgA) can affect fecal CgA level
and the gut microbiome, we tested the effect of
six single-nucleotide polymorphisms known to
regulate gene expression of CHGA on fecal CgA
and abundances of species (table S15). No signif-
icant association was observed, suggesting that
genetic variation in CHGA expression does not
explain the variation observed in the fecal CgA
levels and microbiome composition (tables S16
and S17). Our observation that CgA strongly corre-
lates with microbiome composition, especially
with a large number of species from Bacteroidetes
phylum, and with diversity will hopefully encour-
age studies to unravel the role of CgA in gut health.
We also observed associations (FDR<0.1) be-

tween 63 dietary factors and interindividual dis-
tances inmicrobiota composition, including energy
(kilocalories); intake of carbohydrates, proteins,
and fats; and intake of specific food items such as
bread and soft drinks (Fig. 3 and table S4). Drink-
ing buttermilk (sour milk with a low fat content)
was associatedwith high diversity, whereas drink-
ing high-fat (whole) milk (3.5% fat content) was
associated with lower diversity (table S6). Two of

the species most strongly associated with drink-
ing buttermilk are Leuconostocmesenteroides (q =
9.1 × 10−46) and Lactococcus lactis (q = 2.5 × 10−8),
both used as a starter culture for industrial fer-
mentation (table S11). The abundance of dairy-
fermentation–related bacteria increased with
increasing dairy consumption, indicating poten-
tial for the use of probiotic drinks to augment
and alter the gut microbiome composition. Con-
sumption of alcohol-containing products, coffee,
tea, and sugar-sweetened drinks was also corre-
lated with microbial composition. Consumption
of sugar-sweetened soda had a negative effect
on microbial diversity (adjusted P = 5 × 10−4),

whereas consumption of coffee, tea, and red
wine, which all have a high polyphenol content,
was associatedwith increaseddiversity (19–21). Red
wine consumption correlated with Faecalibac-
terium prausnitzii abundance, which has anti-
inflammatory properties, correlates negatively
with inflammatory bowel disease (22), and shows
higher abundance in high-richness microbiota
(23). Apart from the negative associations be-
tween sugar-sweetened soda and bacterial diver-
sity, other features of a Western-style diet, such as
higher intake of total energy, snacking, and high-
fat (whole) milk, were also associated with lower
microbiota diversity (Fig. 3). A higher amount of
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Fig. 3. Factors associated with interindividual variation of gut microbiome. A total of 126 factors
(FDR<0.1) were associated with interindividual variation of the gut microbiome.The bar plot indicates the
explained variation of each factor in the interindividual variation of microbial composition [Bray-Curtis (BC)
distance].The heatmap next to the bar plot shows the correlation coefficients of each factor with Shannon’s
index of diversity, gene richness, and COG richness, respectively. Color key for correlation is shown.
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carbohydrates in the diet was associated with
lower microbiome diversity. Total carbohydrate
intake was positively associated with Bifidobac-
teria but negatively associated with Lactobacillus,
Streptococcus, and Roseburia species. A low-
carbohydrate diet consistently showed opposite
directions of association for these species.We did
not observe an association of carbohydrate in-
take to prevotella species, as has been described
previously (24).
As expected, the use of antibiotics was signif-

icantly associatedwithmicrobiome composition,
in particular with strong and significant decreases
in two species from the genus Bifidobacterium
(Actinobacteria phylum) (table S11), in line with
previous studies (25). Several other drug catego-

ries, such as proton-pump inhibitors (PPIs) (95
users), metformin (15 users), statins (56 users), and
laxatives (21 users), also had a strong effect on
the gutmicrobiome. PPI users were found to have
profound changes in 33 bacterial pathways (table
S12). The most significant positive correlation
of PPIs was observed with the pathway of 2,3-
butanediol biosynthesis (q = 5.3 × 10−14). We also
observed overlap between species and pathways
associated to PPI andwith calprotectin levels, par-
ticularly for bacteria typical of the oral microbiome
(table S2, A to C; table S11; and fig. S12). This is in
linewith the correlations of PPIswith calprotectin
levels reported in the literature (26). Even after ex-
cluding the 95 PPI users from our analysis, the
positive correlation of calprotectin to most oral

bacteria remained significant, indicating that this
association is not due to the confounding effect
of PPIs (fig. S12). Furthermore, the amounts of
calprotectinwere positively correlatedwith age and
metabolic phenotypes [body mass index (BMI),
diabetes, use of statins and metformin, glycated
hemoglobin (HbA1c), and systolic blood pressure],
but negatively correlated with the consumption
of vegetables, plant proteins, chocolate, and breads.
Multivariate analysis correcting for all factors
revealed 14 species (table S13) and 114 bacterial
metabolic pathways (table S14) exclusively associ-
ated with calprotectin, suggesting that calprotectin
is robustly associated with the gut microbiome.
Metformin is commonly used to control blood

sugar concentrations for treating type 2 diabetes,
but can cause gastrointestinal intolerance (27). In
15 metformin users, we observed an increased
abundance of Escherichia coli and a positive cor-
relation with specific pathways, including the
degradation and utilization of D-glucarate and D-
galactarate and pyruvate fermentation pathways.
Previous studies in Caenorhabditis elegans indi-
cated the specific drug-bacteria interaction ofmet-
formin andE. coli (28). Our results are in linewith
recent observations in humans (29) that suggest
thatmetformin can affect themicrobiome through
short-chain fatty acid (SCFA) production. To con-
firm this observation, we profiled acetate, propi-
onate, and butyrate in 24 type 2 diabetes patients
in our cohort—9 nonmetformin users and 15 users
(4)—and found that SCFA concentrations were
consistently higher in metformin users, especially
for propionate (Wilcoxon test, P = 0.035) (fig. S13).
We assessed the effect of current smoking status,

smoking history, parental smoking, andmaternal
smokingduringpregnancy on thegutmicrobiome.
These parameterswere associatedwithBray-Curtis
distance, albeit with very modest effect. We did
not detect significant associations for individual
species or at pathways. In this study, we included
39 self-reported diseases, for which participants
had reported at least five cases. IBS was reported
by 9.9% of participants (n= 112, table S1) andwas
associated with changes in the gut microbiome
and a lowermicrobial diversity (adjustedP=0.05)
(table S6). Species from the Eggerthella and Copro-
bacillus genera were positively associated with
medication and food allergies, respectively. Indi-
viduals who had suffered a heart attack (n = 10)
in the past had a significantly lower abundance
of Eubacterium eligens bacterium, even after cor-
recting for all other factors (q = 4.6 × 10−4).
Linking the deep-sequenced MGS data to var-

ious intrinsic and exogenous factors from the
same individual not only allowed us to detect as-
sociations at species level, but also provided new
insights into the interaction between the host, mi-
crobiota, andenvironmental factors, includingdiet.
For instance, wehave replicated and expanded our
association of BMI and blood lipid concentrations
with the gut microbiota based on 16S rRNA gene
sequencing data (30) by showing associationswith
four specific species of the family Rikenellaceae.
Wepreviously associated this familywithBMI and
triglycerides in 16S rRNA data. In this study, we
observed that a higher BMI was associated with
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Fig. 4.The association of fecal level of chromogranin A. (A) Principal coordinate plots of Bray-Curtis
distance of microbial composition. Each dot represents one individual, and its color is based on the
abundance level of CgA:Warm colors indicate high abundance and cool colors, low abundance.The red
arrow indicates the association direction of CgA, while the directions of the CgA-associated phyla are
shown as black arrows. (B) Correlation between CgA and other factors at FDR<0.1. (C) Taxonomic tree
of 170 species, of which 61 species were exclusively associated with CgA level. Each dot represents a
taxonomic entity. Red dots indicate positively associated species. Blue dots indicate negatively as-
sociated species. (D) Taxonomic tree of the 61 species exclusively associated with CgA level. The
branches are colored to show phylum levels as shown in the color key. Species in red show increased
abundance associated with higher CgA levels. Species in blue show lower abundance associated with
higher CgA levels.
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a lower abundance of two species from the family
Rikenellaceae, Alistipes finegoldii, and Alistipes
senegalensis, whereas blood lipids were associated
with twoother species,Alistipes shahii andAlistipes
putredinis (table S11). Notably, these species were
also associated to certaindietary factors anddrugs.
For instance, a high level of A. shahii, which was
associated to low triglyceride (TG) levels,was linked
to higher fruit intake (q = 0.00027). Individuals
with ahigher abundance ofA. shahiihad a higher
number of different species in the gut (species rich-
ness) (Spearman r = 0.2, adjusted P = 3.96x10−11),
suggesting a beneficial effect on the microbial
ecosystem (table S18). Correlations with the num-
ber of different species were also found for other
bacteria, including Roseburia hominis, Coprococ-
cus catus, and Barnesiella intestinihominis and
unclassified species from genus Anaerotruncus
that also showed correlation both with fruit, veg-
etable, and nut consumption and with intrinsic
phenotypes like HDL, triglycerides, and quality
of life. On the basis of these data, it would be
interesting to explore the potential to modulate
disease-associated species through medication
or diet, although we still need to address the
causality and underlying mechanism.
Our study revealed significant associations be-

tween the gut microbiome and various intrinsic,
environmental, dietary and medication parame-
ters, and disease phenotypes, with a high replica-
tion rate between MGS and 16S rRNA gene
sequencing data from the same individuals.More-
over, our study provides many new intrinsic and
exogenous factors that correlate with shifts in
the microbiome composition and functionality
that potentially can be manipulated to improve
microbiome-related health, and we hope our re-
sults will inspire further experiments to explore
the biological relevance of associated factors. Al-
thoughmost of the factors thatwe assessed exerted
a very modest effect, fecal levels of CgA showed a
high potential as a biomarker for gut health.
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Kinetically controlled E-selective
catalytic olefin metathesis
Thach T. Nguyen,1 Ming Joo Koh,1 Xiao Shen,1 Filippo Romiti,1

Richard R. Schrock,2 Amir H. Hoveyda1*

A major shortcoming in olefin metathesis, a chemical process that is central to research
in several branches of chemistry, is the lack of efficient methods that kinetically favor E
isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis
reactions may be designed to generate thermodynamically disfavored alkenyl chlorides
and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole %
of a molybdenum-based catalyst, which may be delivered in the form of air- and
moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at
ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic
cross-coupling transformations and found in biologically active entities, thus become easily
and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler
compounds or more complex molecules.

O
lefin metathesis is an enormously enabling
chemical process for which well-defined
catalysts were discovered nearly three
decades ago (1, 2). Kinetically controlled
Z-selective reactions were introduced in

2009 (3), but there are no corresponding transfor-
mations that are broadly applicable and through
which E isomers can be synthesized in high yield.

Although E-selective cross-metathesis (CM) re-
actions involving Ru catechothiolate complexes
(4) were reported very recently in 2016, only
the thermodynamically preferred E isomers of
simple (unfunctionalized) 1,2-disubstituted ali-
phatic alkenes could be obtained in 3 to 31% yield
(5). E alkenes are often lower in energy and thus
generated preferentially; nonetheless, olefin me-
tathesis strategies that furnish them are needed
for several reasons: The energy gap between the
geometric forms is often too small to ensure
high selectivity; E olefin isomers are not always
thermodynamically preferred; and, in many cases,
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gut microbiome composition and diversity
Population-based metagenomics analysis reveals markers for

 
Editor's Summary
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biomarkers of normal gut communities.
cell counts, fecal chromogranin A, and stool consistency. The data give some hints for possible
microbiota composition correlated with a range of factors including diet, use of medication, red blood 

 targeted general populations in Belgium and the Netherlands, respectively. Gutet al.Zhernakhova 
 andet al.microbiome, if it exists at all. Through fecal samples and questionnaires, Falony 

For the benefit of future clinical studies, it is critical to establish what constitutes a ''normal'' gut
''Normal'' for the gut microbiota
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